Capteur de niveau dans une cuve - Paramétrage LORAWAN

<u>Présentation :</u> On dispose d'un capteur à ultrason pour mesurer la hauteur d'un liquide dans une cuve. Celle cuve se situe à plusieurs centaines de mètre des premiers bâtiments. Il n'y a pas d'accès Wifi ou de liaison filaire.

On choisit une liaison sans fil, de type LORAWAN, dont la distance de transmission peut atteindre 15km en milieu dégagé.

Le capteur a les caractéristiques suivantes :

Specification

- Operating Voltage: 3.3V-5v
- Average Current: ≤15mA
- Blind Zone Distance: 0-28cm
- Ranging Distance for Flat Object: 28-750cm
- Output: UART
- Response Time: 100ms
- Probe Center Frequency: 40K±1.0K
- Operating Temperature: -15~60°C
- Storage Temperature: -25~80°C
- Protection Rate: IP67

Ce capteur a une plage de fonctionnement de 28 à 750 cm. La sortie est de type UART (série asynchrone). Ce capteur est associé à un module LORAWAN. Les données sont transmises au serveur TTN.

1 – Paramétrage du capteur sur LORAWAN

On demande de rédiger un compte rendu, avec les réponses aux questions, des copies d'écran etc... Le paramétrage du capteur a été réalisé au préalable sur le serveur TTN.

- ⇒ Se rendre sur le site de TTN : <u>https://www.thethingsnetwork.org</u>
- ⇒ Se loguer avec le compte : <u>guy.colin@ac-lille.fr</u> et mot de passe : •••••••• (à demander au prof).
- \Rightarrow Se rendre dans le menu « Console ».
- ⇒ Choisir la zone Europe
- ⇒ Dans le menu Gateways, vérifier que la passerelle carnot est connectée et relever son numéro EUI.
- ⇒ Dans le menu Applications, vérifier la présence de l'application ultra-son (ID : ultra-son-carnot).
- ⇒ Dans l'application ultra-son, relever le nombre de « End devices » déclarés
- ⇒ Pour le(s) End devices déclaré(s), relever
 - l'ID
 - le DevEUI
 - le JoinEUI

- l'AppKey
- le Device address

⇒ Dans le menu Payload formatters / Uplink, faire une copie d'écran du format (Formatter type et Formatter code).

⇒ Dans le menu Live data, vérifier la réception de données en provenance du capteur.

⇒ Indiquer la périodicité de transmission des données (faible ici pour le TP).

Le capteur transmet la distance en millimètres. L'information est transmise sur 2 octets : MSB en premier, puis LSB.

Exemple : si le capteur transmet les 2 octets [7,67] (codage en décimal), la valeur correspondante en mm sera : 7*256 + 67 = 1859 mm.

⇒ Cliquer sur une trame transmise au serveur TTN, et observer le fichier au format JSON pour chaque trame

⇒ Dans le menu Integrations/MQTT, copier l'adresse du serveur public (port 1883), le Username. Le Password sera communiqué par l'ENT.

2 – Récupération des données dans Node Red

Sous Node Red, créer le Flow suivant :

) mqtt in													
(mqtt out)													
http in	}	v3/ultr	a-son-car	not@ttr	n/device	es/eui-c	0ee40f	1113919	23/up		msq.pavload		
http response 🗧		connected											
http request	}												
💮 websocket in	}												
websocket out										~	function	msg.pa	yload 🗐 🔲
Edit mqtt in nod	e								Edit mqtt in node	> Edit mqtt-l	proker node		
Delete							Cance	el	Delete			Ca	ancel
© Properties		1						<	Properties				
Server	eu1.cloud	.thethings.n	etwork:18	83			~	P	Name	Name			
📰 Topic	v3/ultra-so	n-carnot@t	tn/devices	/eui-c0e	ee40ffff	391923/	/up		Connection		Security	Messages	5 m
🛞 QoS	0	~							Server	eu1.cloud.tl	nethings.network	Port	1883
🕞 Output	a parsed .	JSON objec	f					~	🌣 Protocol	Use TLS	I.1		~
Name	Name				Sclient ID	Leave blank for auto generated							
									😵 Keep Alive	60	0		
									i Session	Use clean	session		

Edit mqtt in node	> Edit mqtt-b	roker node				
Delete						
Properties						
Name	Name					
Connection		Security	Mess			
🌡 Username	ultra-son-ca	rnot@ttn				
Password	•••••					

Edition de la fonction est la suivante (donnée ici en partie, à compléter)

Remarque : Il est possible de récupérer le chemin des données JSON avec la fonction Copy path .

Edit function node

Delete					Cancel
Properties					
Name Name	Name				
Setup		On Start	On Message	On Stop	
1 2 var dis 3 msg.pay 4 return	tance = msg. load={ <mark>"dista</mark> msg;	payload.uplink_messa nce":distance};	age.decoded_payload.bytes[0]	* <mark>256</mark> + msg.payload.uplink_	<pre>message.decoded_payload.bytes[1];</pre>

La fonction doit retourner la distance en mm, sous un format JSON comme ci-dessous :

28/11/2022 16:41:07 node: 9df8e0ca.2ad76

v3/ultra-son-carnot@ttn/devices/eui-c0ee40ffff391923/up:

{ distance: 1863 }

⇒ Ajouter un node Influxdb pour enregistrer la distance dans la base de données TPTSMI, créée lors d'un précédent TP.

⇒ Ajouter une fonction sous Node Red qui puisse extraire du fichier JSON, l'adresse (dev_addr) et l'afficher sous la forme suivante (à faire constater au prof).

28/11/2022 17:13:56 node: 9264efe3.d0706 v3/ultra-son-carnot@ttn/devices/eui-c0ee40ffff391923/up : { dev_addr: "260B493F" }